text/plain
•
11.90 KB
•
375 lines
/* Nujel - Copyright (C) 2020-2022 - Benjamin Vincent Schulenburg
* This project uses the MIT license, a copy should be included under /LICENSE */
/*
* In this file you will find different subroutines for casting from one type to
* another, as well as code for determining which type would be most fitting when
* you have to for example add two values together.
*/
#include "nujel.h"
#ifndef NUJEL_AMALGAMATION
#include "nujel-private.h"
#endif
lClass lClassList[64];
static void initType(int i, const lSymbol *name, lClass *parent){
lClassList[i].name = name;
lClassList[i].parent = parent;
lClassList[i].methods = NULL;
lClassList[i].staticMethods = NULL;
}
static lVal lAddNativeMethodCommon(lClass *T, const lSymbol *name, const char *args, void *fun, uint flags, u8 argCount, lTree **targetTree){
(void)args; (void)T;
lVal v = lValAlloc(ltNativeFunc, lNFuncAlloc());
v.vNFunc->fp = fun;
v.vNFunc->meta = lTreeInsert(NULL, symArguments, lValString(args));
v.vNFunc->argCount = argCount;
if(flags & NFUNC_FOLD){
v.vNFunc->meta = lTreeInsert(v.vNFunc->meta, symFold, lValBool(true));
}
if(flags & NFUNC_PURE){
v.vNFunc->meta = lTreeInsert(v.vNFunc->meta, symPure, lValBool(true));
}
*targetTree = lTreeInsert(*targetTree, name, v);
return v;
}
lVal lAddNativeMethodV(lClass *T, const lSymbol *name, const char *args, lVal (*fun)(lVal), uint flags){
return lAddNativeMethodCommon(T, name, args, fun, flags, (1 << 1), &T->methods);
}
lVal lAddNativeMethodVV(lClass *T, const lSymbol *name, const char *args, lVal (*fun)(lVal, lVal), uint flags){
return lAddNativeMethodCommon(T, name, args, fun, flags, (2 << 1), &T->methods);
}
lVal lAddNativeMethodVVV(lClass *T, const lSymbol *name, const char *args, lVal (*fun)(lVal, lVal, lVal), uint flags){
return lAddNativeMethodCommon(T, name, args, fun, flags, (3 << 1), &T->methods);
}
lVal lAddNativeStaticMethodV(lClass *T, const lSymbol *name, const char *args, lVal (*fun)(lVal), uint flags){
return lAddNativeMethodCommon(T, name, args, fun, flags, (1 << 1), &T->staticMethods);
}
lVal lAddNativeStaticMethodVV(lClass *T, const lSymbol *name, const char *args, lVal (*fun)(lVal, lVal), uint flags){
return lAddNativeMethodCommon(T, name, args, fun, flags, (2 << 1), &T->staticMethods);
}
lVal lAddNativeStaticMethodVVV(lClass *T, const lSymbol *name, const char *args, lVal (*fun)(lVal, lVal, lVal), uint flags){
return lAddNativeMethodCommon(T, name, args, fun, flags, (3 << 1), &T->staticMethods);
}
static lVal lnmTypeName(lVal self){
if(unlikely(self.type != (self.type & 63))){
return lValException(lSymVMError, "Out-of-bounds Type", self);
}
lClass *T = &lClassList[self.type];
if(unlikely(T->name == NULL)){
fprintf(stderr, "T: %u\n", self.type);
return lValException(lSymVMError, "Unnamed Type", self);
}
return lValKeywordS(T->name);
}
static lVal lnmTypeOf(lVal self){
if(unlikely(self.type != (self.type & 63))){
return lValException(lSymVMError, "Out-of-bounds Type", self);
}
return lValType(&lClassList[self.type]);
}
static lVal lnmNilMetaGet(lVal self, lVal key){
(void)self;(void)key;
return NIL;
}
static lVal lnmNilLength(lVal self){
(void)self;
return lValInt(0);
}
static lVal lnmPairLength(lVal self){
lVal l = self;
int i = 0;
for(; l.type == ltPair; l = l.vList->cdr){
i++;
}
if(unlikely(l.type != ltNil)){
i++;
}
return lValInt(i);
}
static lVal lnmTName(lVal self){
if(unlikely(self.vType->name == NULL)){
return lValException(lSymVMError, "Unnamed Type", self);
}
return lValKeywordS(self.vType->name);
}
static lVal lnmAddMethod(lVal self, lVal name, lVal fn){
reqSymbolic(name);
if(unlikely(fn.type != ltLambda)){
return lValExceptionType(fn, ltLambda);
}
self.vType->methods = lTreeInsert(self.vType->methods, name.vSymbol, fn);
return self;
}
static lVal lnmLambdaHas(lVal self, lVal key){
if(unlikely((key.type != ltKeyword) && (key.type != ltSymbol))){
return lValBool(false);
}
lVal v = lGetClosureSym(self.vClosure, key.vSymbol);
return lValBool(v.type != ltException);
}
static lVal lnmLambdaData(lVal self){
return lValTree(self.vClosure->data);
}
static lVal lnmLambdaCode(lVal self){
return lValAlloc(ltBytecodeArr, self.vClosure->text);
}
static lVal lnmLambdaArguments(lVal self){
return self.vClosure->args;
}
static lVal lnmLambdaParent(lVal self){
if(self.vClosure->parent == NULL){
return NIL;
}else{
lType T;
switch(self.vClosure->parent->type){
case closureLet:
case closureTry:
T = ltEnvironment;
break;
default:
T = ltLambda;
break;
}
return lValAlloc(T, self.vClosure->parent);
}
}
static lVal lnmLambdaParentSet(lVal self, lVal v){
if(v.type == ltNil){
self.vClosure->parent = NULL;
} else {
reqClosure(v);
self.vClosure->parent = v.vClosure;
}
return self;
}
static lVal lnmNativeMetaGet(lVal self, lVal key){
reqSymbolic(key);
lVal t = lTreeRef(self.vNFunc->meta, key.vSymbol);
return t.type != ltException ? t : NIL;
}
static lVal lnmNujelMetaGet(lVal self, lVal key){
reqSymbolic(key);
lVal t = lTreeRef(self.vClosure->meta, key.vSymbol);
return t.type != ltException ? t : NIL;
}
static lVal lnmNujelMetaSet(lVal self, lVal key, lVal value){
reqSymbolic(key);
self.vClosure->meta = lTreeInsert(self.vClosure->meta, key.vSymbol, value);
return self;
}
static lVal lnmNFuncArguments(lVal self) {
return lTreeRef(self.vNFunc->meta, symArguments);
}
static void lTypesAddCoreMethods(){
lClass *Any = &lClassList[ltAny];
lAddNativeMethodV (Any, lSymS("type-of"), "(self)", lnmTypeOf, NFUNC_PURE);
lAddNativeMethodV (Any, lSymS("type-name"), "(self)", lnmTypeName, NFUNC_PURE);
lAddNativeMethodV (Any, lSymS("length"), "(self)", lnmNilLength, 0);
lAddNativeMethodVV(Any, lSymS("meta"), "(self key)", lnmNilMetaGet, 0);
lClass *Pair = &lClassList[ltPair];
lAddNativeMethodV (Pair, lSymS("length"), "(self)", lnmPairLength, NFUNC_PURE);
lClass *Lambda = &lClassList[ltLambda];
lAddNativeMethodVV(Lambda, lSymS("has?"), "(self key)", lnmLambdaHas, NFUNC_PURE);
lAddNativeMethodV (Lambda, lSymS("code"), "(self)", lnmLambdaCode, NFUNC_PURE);
lAddNativeMethodV (Lambda, lSymS("data"), "(self)", lnmLambdaData, 0);
lAddNativeMethodV (Lambda, lSymS("arguments"), "(self)", lnmLambdaArguments, 0);
lAddNativeMethodV (Lambda, lSymS("parent"), "(self)", lnmLambdaParent, 0);
lAddNativeMethodVV(Lambda, lSymS("parent!"), "(self v)", lnmLambdaParentSet, 0);
lAddNativeMethodVV(Lambda, lSymS("meta"), "(self key)", lnmNujelMetaGet, 0);
lAddNativeMethodVVV(Lambda,lSymS("meta!"), "(self key value)", lnmNujelMetaSet, 0);
lClass *NFunc = &lClassList[ltNativeFunc];
lAddNativeMethodVV(&lClassList[ltNativeFunc], lSymS("meta"), "(self key)", lnmNativeMetaGet, 0);
lAddNativeMethodV (NFunc, lSymS("arguments"), "(self)", lnmNFuncArguments, 0);
lClass *Type = &lClassList[ltType];
lAddNativeMethodV (Type, lSymS("name"), "(self)", lnmTName, NFUNC_PURE);
lAddNativeMethodVVV(Type, lSymS("add-method"), "(self name fn)", lnmAddMethod, NFUNC_PURE);
}
lVal lMethodLookup(const lSymbol *method, lVal self){
if(unlikely(self.type != (self.type & 63))){
lValException(lSymVMError, "Out-of-bounds Type", self);
}
if(self.type == ltTree){
lVal v = lTreeRef(self.vTree->root, method);
if(v.type != ltException){
return v;
}
lVal proto = lTreeRef(self.vTree->root, lSymPrototype);
if(proto.type != ltException){
return lMethodLookup(method, proto);
}
}
if(self.type == ltType){
const lClass *T = self.vType;
for(;T;T = T->parent){
for(const lTree *t = T->staticMethods; t; t = (method > t->key) ? t->right : t->left){
if(method == t->key){
return t->value;
}
}
}
}
const lClass *T = &lClassList[self.type];
for(;T;T = T->parent){
for(const lTree *t = T->methods; t; t = (method > t->key) ? t->right : t->left){
if(method == t->key){
return t->value;
}
}
}
return lValException(lSymUnboundVariable, "Unbound method", self);
}
void lDefineTypeVars(lClosure *c){
lDefineVal(c, "Nil", lValType(&lClassList[ltNil]));
lDefineVal(c, "Symbol", lValType(&lClassList[ltSymbol]));
lDefineVal(c, "Keyword", lValType(&lClassList[ltKeyword]));
lDefineVal(c, "Bool", lValType(&lClassList[ltBool]));
lDefineVal(c, "Int", lValType(&lClassList[ltInt]));
lDefineVal(c, "Float", lValType(&lClassList[ltFloat]));
lDefineVal(c, "Pair", lValType(&lClassList[ltPair]));
lDefineVal(c, "Array", lValType(&lClassList[ltArray]));
lDefineVal(c, "Tree", lValType(&lClassList[ltTree]));
lDefineVal(c, "Map", lValType(&lClassList[ltMap]));
lDefineVal(c, "Lambda", lValType(&lClassList[ltLambda]));
lDefineVal(c, "Macro", lValType(&lClassList[ltMacro]));
lDefineVal(c, "NativeFunc", lValType(&lClassList[ltNativeFunc]));
lDefineVal(c, "Environment",lValType(&lClassList[ltEnvironment]));
lDefineVal(c, "String", lValType(&lClassList[ltString]));
lDefineVal(c, "Buffer", lValType(&lClassList[ltBuffer]));
lDefineVal(c, "BufferView", lValType(&lClassList[ltBufferView]));
lDefineVal(c, "BytecodeArr",lValType(&lClassList[ltBytecodeArr]));
lDefineVal(c, "FileHandle", lValType(&lClassList[ltFileHandle]));
lDefineVal(c, "Type", lValType(&lClassList[ltType]));
lDefineVal(c, "Any", lValType(&lClassList[ltAny]));
}
void lTypesInit(){
initType(ltAny, lSymLTAny, NULL);
lClass *tAny = &lClassList[ltAny];
initType(ltNil, lSymLTNil, tAny);
initType(ltSymbol, lSymLTSymbol, tAny);
initType(ltKeyword, lSymLTKeyword, tAny);
initType(ltBool, lSymLTBool, tAny);
initType(ltInt, lSymLTInt, tAny);
initType(ltFloat, lSymLTFloat, tAny);
initType(ltPair, lSymLTPair, tAny);
initType(ltArray, lSymLTArray, tAny);
initType(ltTree, lSymLTTree, tAny);
initType(ltMap, lSymLTMap, tAny);
initType(ltNativeFunc, lSymLTNativeFunction, tAny);
initType(ltLambda, lSymLTLambda, tAny);
initType(ltMacro, lSymLTMacro, &lClassList[ltLambda]);
initType(ltEnvironment, lSymLTEnvironment, &lClassList[ltLambda]);
initType(ltBuffer, lSymLTBuffer, tAny);
initType(ltBufferView, lSymLTBufferView, tAny);
initType(ltBytecodeArr, lSymLTBytecodeArray, tAny);
initType(ltString, lSymLTString, &lClassList[ltBuffer]);
initType(ltFileHandle, lSymLTFileHandle, tAny);
initType(ltType, lSymLTType, tAny);
initType(ltComment, NULL, tAny);
initType(ltException, NULL, tAny);
lTypesAddCoreMethods();
}
lVal lValExceptionType(lVal v, lType T){
char buf[128];
snprintf(buf, sizeof(buf), "expected argument of type %s, not: ", getTypeSymbolT(T)->c);
buf[sizeof(buf)-1] = 0;
return lValException(lSymTypeError, buf, v);
}
lVal lValExceptionArity(lVal v, int arity){
char buf[128];
snprintf(buf, sizeof(buf), "This subroutine needs %i arguments", arity);
buf[sizeof(buf)-1] = 0;
return lValException(lSymArityError, buf, v);
}
lVal lValExceptionNonNumeric(lVal v){
return lValException(lSymTypeError, "Can't calculate with non numeric types", v);
}
/* Cast v to be an int without memory allocations, or return fallback */
i64 castToInt(const lVal v, i64 fallback){
switch(v.type){
case ltFloat: return v.vFloat;
case ltInt: return v.vInt;
default: return fallback;
}
}
/* Cast v to be a bool without memory allocations, or return false */
bool castToBool(const lVal v){
return (v.type == ltBool ? v.vBool : likely(v.type != ltNil));
}
const char *castToString(const lVal v, const char *fallback){
return (v.type != ltString) ? fallback : v.vString->data;
}
/* Determine which type has the highest precedence between a and b */
lType lTypecast(const lType a, const lType b){
if (likely(a == b)){
return a;
}
if((a == ltFloat) || (b == ltFloat)){
return ltFloat;
}
return ltNil;
}
lVal requireFloat(lVal v){
if(likely(v.type == ltFloat)){
return v;
} else if(v.type == ltInt){
return lValFloat(v.vInt);
} else {
return lValException(lSymTypeError, "Need an :Int or :Float", v);
}
}
lVal optionalSymbolic(lVal v, const lSymbol *fallback){
if(likely(v.type == ltNil)){
return lValSymS(fallback);
}
if(unlikely((v.type != ltKeyword) && (v.type != ltSymbol))){
return lValException(lSymTypeError, "Need a :Symbol or :Keyword", v);
}
return v;
}