text/plain
•
9.38 KB
•
320 lines
/* Nujel - Copyright (C) 2020-2022 - Benjamin Vincent Schulenburg
* This project uses the MIT license, a copy should be included under /LICENSE
*/
#ifndef NUJEL_AMALGAMATION
#include "nujel-private.h"
#endif
lTree *lTreeNew(const lSymbol *s, lVal v) {
lTree *ret = lTreeAllocRaw();
ret->key = s;
ret->height = 1;
ret->value = v;
return ret;
}
static uint lTreeHeight(const lTree *t) { return t == NULL ? 0 : t->height; }
static uint lTreeCalcHeight(const lTree *t) { return 1 + MAX(lTreeHeight(t->left), lTreeHeight(t->right)); }
/* Get the balance factor of T,
* which is used to rebalance the tree automatically during inserts */
static int lTreeGetBalance(const lTree *t) { return t == NULL ? 0 : lTreeHeight(t->left) - lTreeHeight(t->right); }
/* Reset S to be associated to V if it has already been bound, storing TRUE in
* FOUND on success */
bool lTreeSet(lTree *t, const lSymbol *s, lVal v) {
lTree *c = t;
while (c != NULL) {
if (c->key == s) {
c->value = v;
return true;
}
c = s > c->key ? c->right : c->left;
}
return false;
}
/* Rotate the tree X to the left, in order to balance the tree again */
static lTree *lTreeRotateLeft(lTree *x) {
lTree *y = x->right;
if (y == NULL) {
return x;
}
lTree *T2 = y->left;
y->left = x;
x->right = T2;
x->height = lTreeCalcHeight(x);
y->height = lTreeCalcHeight(y);
return y;
}
/* Rotate the tree X to the right, in order to balance the tree again */
static lTree *lTreeRotateRight(lTree *y) {
lTree *x = y->left;
if (x == NULL) {
return y;
}
lTree *T2 = x->right;
x->right = y;
y->left = T2;
x->height = lTreeCalcHeight(x);
y->height = lTreeCalcHeight(y);
return x;
}
/* Rebalance the tree T if is out of balance, S should be the last symbol that
* was inserted, which must have led to the inbalance with it's insertion */
static lTree *lTreeBalance(lTree *t, const lSymbol *s) {
int balance = lTreeGetBalance(t);
if (balance < -1) {
if (s < t->right->key) {
t->right = lTreeRotateRight(t->right);
}
return lTreeRotateLeft(t);
} else if (balance > 1) {
if (s > t->left->key) {
t->left = lTreeRotateLeft(t->left);
}
return lTreeRotateRight(t);
}
return t;
}
/* Insert an association S -> V in the tree T, creating a new segment if
* necessary, otherwise the old segment will be mutated */
lTree *lTreeInsert(lTree *t, const lSymbol *s, lVal v) {
if (unlikely(t == NULL)) {
return lTreeNew(s, v);
} else if (unlikely(t->key == NULL)) {
t->key = s;
t->value = v;
return t;
} else if (unlikely(t->key == s)) {
t->value = v;
return t;
} else {
if (s < t->key) {
t->left = lTreeInsert(t->left, s, v);
} else {
t->right = lTreeInsert(t->right, s, v);
}
t->height = lTreeCalcHeight(t);
t = lTreeBalance(t, s);
return t;
}
}
/* Get whatever value is associated in T to S,
* Returns a simple Exception if nothing is found */
lVal lTreeRef(const lTree *t, const lSymbol *s) {
const lTree *c = t;
while (c) {
if (s == c->key) {
return c->value;
}
c = s > c->key ? c->right : c->left;
}
return lValExceptionSimple();
;
}
/* Add all the keys within T to the beginning LIST */
static lVal lTreeAddKeysToList(const lTree *t, lVal list) {
if (unlikely((t == NULL) || (t->key == NULL))) {
return list;
}
list = lTreeAddKeysToList(t->right, list);
list = lCons(lValKeywordS(t->key), list);
return lTreeAddKeysToList(t->left, list);
}
/* Add all the values within T to the beginning LIST */
static lVal lTreeAddValuesToList(const lTree *t, lVal list) {
if (unlikely((t == NULL) || (t->key == NULL))) {
return list;
}
list = lTreeAddValuesToList(t->right, list);
list = lCons(t->value, list);
return lTreeAddValuesToList(t->left, list);
}
/* Create a list of all the keys within T */
static lVal lTreeKeysToList(const lTree *t) { return t ? lTreeAddKeysToList(t, NIL) : NIL; }
/* Create a list of all the values within T */
static lVal lTreeValuesToList(const lTree *t) { return t ? lTreeAddValuesToList(t, NIL) : NIL; }
/* Return the total size of the tree T */
static uint lTreeSize(const lTree *t) {
return t == NULL ? 0 : (t->key ? 1 : 0) + lTreeSize(t->left) + lTreeSize(t->right);
}
/* Return a duplicate of t */
lTree *lTreeDup(const lTree *t) {
if (unlikely(t == NULL)) {
return NULL;
}
lTree *ret = lTreeAllocRaw();
ret->key = t->key;
ret->value = t->value;
ret->height = t->height;
ret->left = lTreeDup(t->left);
ret->right = lTreeDup(t->right);
return ret;
}
lVal lnfTreeNew(lClosure *c, lVal v) {
(void)c;
lTreeRoot *t = lTreeRootAllocRaw();
lVal ret = lValAlloc(ltTree, t);
for (lVal n = v; n.type == ltPair; n = lCddr(n)) {
lVal car = lCar(n);
if (car.type == ltNil) {
break;
}
car = requireSymbolic(car);
if (unlikely(car.type == ltException)) {
return car;
}
t->root = lTreeInsert(t->root, car.vSymbol, lCadr(n));
}
return ret;
}
static lVal lnfTreeGetKeys(lClosure *c, lVal v) {
(void)c;
lVal car = requireTree(lCar(v));
if (unlikely(car.type == ltException)) {
return car;
}
return lTreeKeysToList(car.vTree->root);
}
static lVal lnfTreeGetValues(lClosure *c, lVal v) {
(void)c;
lVal car = requireTree(lCar(v));
if (unlikely(car.type == ltException)) {
return car;
}
return lTreeValuesToList(car.vTree->root);
}
static lVal lnfTreeHas(lClosure *c, lVal v) {
(void)c;
lVal car = requireTree(lCar(v));
if (unlikely(car.type == ltException)) {
return car;
}
lVal cadr = requireSymbolic(lCadr(v));
if (unlikely(cadr.type == ltException)) {
return cadr;
}
return lValBool(lTreeRef(car.vTree->root, cadr.vSymbol).type != ltException);
}
static lVal lnfTreeSet(lClosure *c, lVal v) {
(void)c;
lVal car = lCar(v);
if (unlikely(car.type == ltNil)) {
car = lValTree(NULL);
} else {
car = requireMutableTree(car);
if (unlikely(car.type == ltException)) {
return car;
}
}
lTreeRoot *t = car.vTree;
lVal cadr = requireSymbolic(lCadr(v));
if (unlikely(cadr.type == ltException)) {
return cadr;
}
const lSymbol *key = cadr.vSymbol;
t->root = lTreeInsert(t->root, key, lCaddr(v));
return car;
}
static lVal lnfTreeSize(lClosure *c, lVal v) {
(void)c;
lVal car = requireTree(lCar(v));
if (unlikely(car.type == ltException)) {
return car;
}
return lValInt(lTreeSize(car.vTree->root));
}
static lVal lnfTreeDup(lClosure *c, lVal v) {
(void)c;
if (unlikely((v.type != ltPair) || (v.vList->car.type != ltTree))) {
return lValException("type-error", "tree/dup can only be called with a tree as an argument", v);
}
lVal car = requireTree(lCar(v));
if (unlikely(car.type == ltException)) {
return car;
}
lTree *tree = car.vTree->root;
tree = lTreeDup(tree);
return lValTree(tree);
}
static lVal lnfTreeKeyAst(lClosure *c, lVal v) {
(void)c;
lVal car = requireTree(lCar(v));
if (unlikely(car.type == ltException)) {
return car;
}
lTree *tree = car.vTree->root;
return tree ? lValKeywordS(tree->key) : NIL;
}
static lVal lnfTreeValueAst(lClosure *c, lVal v) {
(void)c;
lVal car = requireTree(lCar(v));
if (unlikely(car.type == ltException)) {
return car;
}
lTree *tree = car.vTree->root;
return tree ? tree->value : NIL;
}
static lVal lnfTreeLeftAst(lClosure *c, lVal v) {
(void)c;
lVal car = requireTree(lCar(v));
if (unlikely(car.type == ltException)) {
return car;
}
lTree *tree = car.vTree->root;
return (tree && tree->left) ? lValTree(tree->left) : NIL;
}
static lVal lnfTreeRightAst(lClosure *c, lVal v) {
(void)c;
lVal car = requireTree(lCar(v));
if (unlikely(car.type == ltException)) {
return car;
}
lTree *tree = car.vTree->root;
return (tree && tree->right) ? lValTree(tree->right) : NIL;
}
void lOperationsTree(lClosure *c) {
lAddNativeFunc(c, "tree/new", "plist", "Return a new tree", lnfTreeNew);
lAddNativeFunc(c, "tree/keys", "(tree)", "Return each key of TREE in a list", lnfTreeGetKeys);
lAddNativeFunc(c, "tree/values", "(tree)", "Return each value of TREE in a list", lnfTreeGetValues);
lAddNativeFunc(c, "tree/size", "(tree)", "Return the amount of entries in TREE", lnfTreeSize);
lAddNativeFunc(c, "tree/has?", "(tree sym)", "Return #t if TREE contains a value for SYM", lnfTreeHas);
lAddNativeFunc(c, "tree/set!", "(tree sym val)", "Set SYM to VAL in TREE", lnfTreeSet);
lAddNativeFunc(c, "tree/dup", "(tree)", "Return a duplicate of TREE", lnfTreeDup);
lAddNativeFunc(c, "tree/key*", "(tree)", "Low-level: return the key for TREE segment", lnfTreeKeyAst);
lAddNativeFunc(c, "tree/value*", "(tree)", "Low-level: return the value for TREE segment", lnfTreeValueAst);
lAddNativeFunc(c, "tree/left*", "(tree)", "Low-level: return the left ref for TREE segment", lnfTreeLeftAst);
lAddNativeFunc(c, "tree/right*", "(tree)", "Low-level: return the right ref for TREE segment", lnfTreeRightAst);
}